Abstract

The theory of discrete operators in spaces of fractional quotients is developed. A theorem on the stability of discrete operators under smooth perturbations is proved. On this basis, using special quadrature formulae of rectangular kind, the convergence of approximate solutions of hypersingular integral equations to their exact solutions is demonstrated and a mathematical substantiation of the method of closed discrete vortex frameworks is obtained. The same line of argument is also applied to difference equations arising in the solution of the homogeneous Dirichlet problem for a general second-order elliptic equation with variable coefficients.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.