Abstract
We generalize the concept of a space of numerical events in such a way that this generalization corresponds to arbitrary orthomodular posets whereas spaces of numerical events correspond to orthomodular posets having a full set of states. Moreover, we show that there is a natural one-to-one correspondence between orthomodular posets and certain posets with sectionally antitone involutions. Finally, we characterize orthomodular lattices among orthomodular posets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.