Abstract

In Chap. 1 we recalled some of the basic notions and results which are commonly used in differential geometry. We had presented them with the intent of showing how they pass into non-commutative geometry. By definition, a non-commutative space is a spectral triple\(\{ \mathcal {A}, \rho , F \}\) consisting of an associative, not necessarily commutative or topological algebra \(\mathcal {A}\), a Fredholm operator F acting on a separable Hilbert space H and \(\rho : \mathcal {A} \longrightarrow \mathit {L}(H)\) a representation of the algebra \(\mathcal {A}\) onto the Hilbert space H, subject to additional conditions. Such a structure codifies an abstract elliptic operator defined by Atiyah (K-Theory, Benjamin, 1967). While in differential geometry elliptic operators are defined after multiple structures are summed up, in non-commutative geometry this process is reversed. The study of non-commutative geometry consists of finding the hidden mathematical structures codified by a spectral triple. In Chap. 2 we show how the notions of space, bundles, homology/cohomology and characteristic classes can be extracted from spectral triples. We stress that non-commutative geometry objects are defined in such a way that (1) the locality and (2) the commutativity assumptions, used in the differentiable geometry counterparts, are not postulated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.