Abstract

We have investigated the dependence of the threshold pump power and slope efficiency of 415 nm (In)GaN vertical cavity surface emitting lasers on the wavelength of the pump source and the number of quantum wells. InGaN double quantum well resonant-periodic-gain structures with 6, 8, and 10 periods have been compared. By barrier and well pumping of the samples with a 375 nm dye laser, a nearly 10 times reduction of the laser threshold was observed compared to pumping with a 337 nm nitrogen laser source. The laser threshold was found to be independent of the number of quantum wells. The slope efficiency seems to be not affected by the pump wavelength and resonant-periodic-gain periods. The results are discussed with a rate equation model that takes into account the inhomogeneous pumping of the quantum wells and optical thickness variations in the resonant-periodic-gain structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call