Abstract

This paper presents an iterative technique for the design of planar coupled-resonator microwave filters, which exploits initial information on the equivalent circuit elements within the space-mapping technique. To accelerate the convergence of the design process, information on the dependence of the elements of the equivalent circuit on adjustable geometrical and physical parameters, which is available from the initial design step, is used. The technique is applied to design harmonic-reject planar filters. Results from applications to fourth- and sixth-order filters show that the successful designs are achieved with at most two iterations. A sixth-order harmonic-reject filter is then fabricated and measured.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call