Abstract

We generalise Ferus' work to study isoparametric hypersurfaces in semi-Riemannian space forms focusing, in this particular case, on anti-De Sitter spaces. We will show that two is an upper bound for the number of principal curvatures in a spacelike isoparametric hypersurface in the anti-De Sitter space. This fact will lead us to deduce a partial classification of isoparametric hypersurfaces in anti-De Sitter spaces.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.