Abstract

In this work we study spacelike hypersurfaces immersed in spatially open standard static spacetimes with complete spacelike slices. Under appropriate lower bounds on the Ricci curvature of the spacetime in directions tangent to the slices, we prove that every complete CMC hypersurface having either bounded hyperbolic angle or bounded height is maximal. Our conclusions follow from general mean curvature estimates for spacelike hypersurfaces. In case where the spacetime is a Lorentzian product with spatial factor of nonnegative Ricci curvature and sectional curvatures bounded below, we also show that a complete maximal hypersurface not intersecting a spacelike slice is itself a slice. This result is obtained from a gradient estimate for parametric maximal hypersurfaces.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.