Abstract

Memory-centric computing demands careful organization of the virtual address space, but traditional methods for doing so are inflexible and inefficient. If an application wishes to address larger physical memory than virtual address bits allow, if it wishes to maintain pointer-based data structures beyond process lifetimes, or if it wishes to share large amounts of memory across simultaneously executing processes, legacy interfaces for managing the address space are cumbersome and often incur excessive overheads. We propose a new operating system design that promotes virtual address spaces to first-class citizens, enabling process threads to attach to, detach from, and switch between multiple virtual address spaces. Our work enables data-centric applications to utilize vast physical memory beyond the virtual range, represent persistent pointer-rich data structures without special pointer representations, and share large amounts of memory between processes efficiently.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call