Abstract
The aim of this paper is the analysis of simultaneous attitude control and momentum-wheel management of a spacecraft by means of magnetic actuators only. A proof of almost global asymptotic stability is derived for control laws that drive a rigid satellite toward attitude stabilization in the orbit frame when the momentum wheel is aligned with one of the principal axes of inertia. Performance of the proposed control laws is demonstrated by numerical simulations under actuator saturation. Robustness to external disturbances and model uncertainties is also evaluated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.