Abstract
Different Earth-observing (EO) sensors have various capabilities for diverse observing tasks. Sensor planning services make the choice of web-ready sensors for specific observing tasks with regard to observing requests and sensor capabilities. Sensor capabilities rely on various parameters; thus, choosing EO sensors for specific observing tasks relying directly on these parameters is a multicriteria decision process. A sensor's capability can be drawn from these parameters with the help of an algorithm. Furthermore, if divided into different clusters based on capabilities, applicable sensors can be more easily chosen for a category of observing tasks. In this paper, a spaceborne EO optical sensor static capability index (SSCI) mechanism is drawn from an evaluation-and-clustering algorithm, which is composed of a self-organizing neural map in combination with weighted principal component analysis. The scheme of SSCI relies on no expert analysis system and thus is more flexible and efficient. EO scenarios of disaster reactions are among the application of this algorithm. In particular, scenarios of flooding disaster forecasting, relief aiding, and postdisaster loss assessment within the framework of International Charter on Space and Major Disasters have been utilized for experiments. They have shown that the SSCI assessing algorithm is feasible and stable, and the EO optical sensor clustering algorithm based on SSCI can offer reasonable clustering accuracies of EO optical sensors. In our experiments, the EO optical sensor SSCI computation and clustering algorithm had a time consumption within 2 s and 2 min, respectively, and memory consumption within 200 MB on a normal personal computer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Geoscience and Remote Sensing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.