Abstract

This paper deals with a synthesis of space-vector pulsewidth modulation (SVPWM) control methods applied for an H-bridge inverter feeding a three-phase permanent-magnet synchronous machine (PMSM) in electric-vehicle (EV) applications. First, a short survey of existing architectures of power converters, particularly those adapted to degraded operating modes, is presented. Standard SVPWM control methods are compared with three innovative methods using EV drive specifications in the normal operating mode. Then, a rigorous analysis of the margins left in the control strategy is presented for a semiconductor switch failure to fulfill degraded operating modes. Finally, both classic and innovative strategies are implemented in numerical simulation; their results are analyzed and discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.