Abstract

A space vector pulse-width modulation (SVPWM) algorithm for a three-level asymmetrical six-phase drive based on vector space decomposition (VSD) approach is presented in this paper. A modification in zero plane of the transformation matrix is proposed in order to meet the requirement that the realisation of sinusoidal output phase voltages can be obtained through the chosen output leg voltage space vectors. Furthermore, a method of choosing the switching sequences based on all possible one-level transitions of the leg voltages, i.e. a permutation method, is introduced. The algorithm is then validated experimentally and obtained results show that the developed method successfully achieves the desired fundamental phase voltage, although low order harmonics are present due to uncompensated inverter dead time. Last but not least, the performance of the proposed SVPWM algorithm is compared to several carrier-based PWM algorithms including in-phase disposition with ‘double min-max injection’ (PD-DI). This is a little known type of injection, which is verified to obtain identical performance as the presented multilevel algorithm.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call