Abstract

This paper investigates the different control objectives, such as loss reduction, neutral point (NP) balance and noise reduction of the space vector modulation (SVM), for the three-level neutral point clamped (NPC) converter. A detailed loss model and simulation model is built for quantitative loss and NP voltage ripple analysis. An improved SVM method is proposed to reduce NP imbalance and switching loss/noise simultaneously. The coordinately selected small vectors consider both the NP charge and the pulse sequence so that the minimized NP ripple and switching events are guaranteed in one switching cycle. In addition, the switching events between switching cycles are also considered to reduce the total switching loss. This method ensures an evenly distributed device loss in each phase leg and also a constant system efficiency under different power factors. The control result for NP balance and loss reduction is verified by using both a simulation model and an experimental prototype on a 200-kVA three-level NPC converter hardware.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.