Abstract
Point spread function (PSF) is important for evaluating an optical system and image deblurring. In this paper, we proposed a method to measure space-variant PSF at any depth based on single-pixel imaging (SPI), and we initiated a depth-variant PSF interpolation model. In our method, we regarded space-variant PSF as light transport coefficients from object points to image pixels. By applying SPI to each image pixel to obtain these light transport coefficients at different depths, the PSF of each object point can be extracted. The depth calculation of PSF is based on multi-frequency heterodyne phase-shifting principles and perspective-n-point (PnP) algorithm. In our PSF interpolation model, we interpolated the light transport coefficients from different object points to an image pixel first. We then obtained the interpolated PSF indirectly from the interpolated coefficients. With simple experimental facilities containing a digital camera and a liquid crystal display (LCD) screen to display and capture specific patterns, which relative distance is changed, the proposed method accurately obtained the space-variant PSF at any depth. Without complicated calculation, PSF at a certain depth can be interpolated from the PSF measured data at another depth with our PSF interpolation method. Significant similarities exist between the interpolated PSF and directly measured PSF. Our work is a successful attempt in using SPI to solve traditional optical problems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.