Abstract
We propose a space-time stick-breaking process for the disease cluster estimation. The dependencies for spatial and temporal effects are introduced by using space-time covariate dependent kernel stick-breaking processes. We compared this model with the space-time standard random effect model by checking each model's ability in terms of cluster detection of various shapes and sizes. This comparison was made for simulated data where the true risks were known. For the simulated data, we have observed that space-time stick-breaking process performs better in detecting medium- and high-risk clusters. For the real data, county specific low birth weight incidences for the state of South Carolina for the years 1997-2007, we have illustrated how the proposed model can be used to find grouping of counties of higher incidence rate.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.