Abstract
We construct space-time stationary solutions of the 1D Burgers equation with random forcing in the absence of periodicity or any other compactness assumptions. More precisely, for the forcing given by a homogeneous Poissonian point field in space-time we prove that there is a unique global solution with any prescribed average velocity. These global solutions serve as one-point random attractors for the infinite-dimensional dynamical system associated to solutions to the Cauchy problem. The probability distribution of the global solutions defines a stationary distribution for the corresponding Markov process. We describe a broad class of initial Cauchy data for which the distribution of the Markov process converges to the above stationary distribution. Our construction of the global solutions is based on a study of the field of action-minimizing curves. We prove that for an arbitrary value of the average velocity, with probability 1 there exists a unique field of action-minimizing curves initiated at all of the Poissonian points. Moreover action-minimizing curves corresponding to different starting points merge with each other in finite time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.