Abstract
Maxwell's equations can be satisfied not only by plane electromagnetic waves, but also by more exotic space-time nonseparable electromagnetic pulses which cannot be represented as a product of time- and space-dependent functions. A family of such pulses with finite energy was identified by Ziolkowski [Phys. Rev. A 39, 2005 (1989)]. Later, Hellwarth and Nouchi [Phys. Rev. E 54, 889 (1996)] highlighted a subset of Ziolkowski's pulses, now known as flying donuts, a formation of polarization singularities of toroidal topology traveling at the speed of light. Spurred by recent advances in ultrafast and topological optics, space-time nonseparable electromagnetic excitations are now becoming the focus of growing experimental efforts as they hold promise for topological information transfer, probing and inducing transient excitations in matter such as anapole and toroidal modes. Here we demonstrate that the flying donut can be constructed from an ensemble of monochromatic plane waves with continuous spatial and frequency spectrum and hence can be generated by converting broadband conventional transverse electromagnetic pulses.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.