Abstract
In this paper, we analyze space-time finite element methods for the numerical solution of distributed parabolic optimal control problems with energy regularization in the Bochner space $L^2(0,T;H^{-1}(\Omega))$. By duality, the related norm can be evaluated by means of the solution of an elliptic quasi-stationary boundary value problem. When eliminating the control, we end up with the reduced optimality system that is nothing but the variational formulation of the coupled forward-backward primal and adjoint equations. Using Babuška's theorem, we prove unique solvability in the continuous case. Furthermore, we establish the discrete inf-sup condition for any conforming space-time finite element discretization yielding quasi-optimal discretization error estimates. Various numerical examples confirm the theoretical findings. We emphasize that the energy regularization results in a more localized control with sharper contours for discontinuous target functions, which is demonstrated by a comparison with an $L^2$-regularization and with a sparse optimal control approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.