Abstract

In this paper we suggest a fast numerical approach to treat problems of the hereditary linear viscoelasticity, which results in the system of elliptic partial differential equations in space variables, who's coefficients are Volterra integral operators of the second kind in time. We propose to approximate the relaxation kernels by the product of purely time- and space-dependent terms, which is achieved by their piecewise-polynomial space-interpolation. A priori error estimate was obtained and it was shown, that such approximation does not decrease the convergence order, when an interpolation polynomial is chosen of the same order as the shape functions for the spatial finite element approximation, while the computational effort is significantly reduced.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.