Abstract

Along the Japan trench where some Mw8 class interplate earthquakes occurred in the past century such as the 1896 Sanriku tsunami earthquake (M6.8, Mt8.6, 12×10 20 N m) and the 1968 Tokachi-oki earthquake (Mw8.2, 28×10 20 N m), the Pacific plate is subducting under northeast Japan at a rate of around 8 cm/year. The seismic coupling coefficient in this region has been estimated to be 20–40%. In the past decade, three ultra-slow earthquakes have occurred in the Sanriku-oki region (39°N–42°N): the 1989 Sanriku-oki (Mw7.4), the 1992 Sanriku-oki (Mw6.9), and the 1994 Sanriku-oki (Mw7.7) earthquakes. Integrating their interplate moments released both seismically and aseismically, we have the following conclusions. (1) The sum of the seismic moments of the three ultra-slow earthquakes was (4.8–6.6)×10 20 N m, which was 20–35% of the accumulated moment (18.6–23.0)×10 20 N m, in the region (39°N–40.6°N, 142°E–144°E) for the 21–26 years since the 1968 Mw8.2 Tokachi-oki earthquake. This is consistent with the previous estimates of the seismic coupling coefficient of 20–40%. On the other hand, the sum of the interplate moments including aseismic faulting is (11–16)×10 20 N m, leading to a “seismo-geodetic coupling coefficient” of 50–85%, which is an extension of the seismic coupling coefficient to include slow events. (2) The time constants showed a large range from 1 min (∼10 2 s) for the 1968 Tokachi-oki earthquake to 10–20 min (∼10 3 s) for the 1896 Sanriku tsunami earthquake, to one day (∼10 5 s) for the 1992 Sanriku-oki ultra-slow earthquake, to on the order of one year (∼10 7 s) for the 1994 Sanriku-oki ultra-slow earthquakes. (3) Based on the space–time distribution, three “gaps of moment release,” (40.6°N–42°N, 142°E–144°E) 39°N–40°N, 142°E–143°E) and (39°N–40°N, 142°E–144°E), are identified, instead of the gaps of seismicity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.