Abstract

The computation of periodic flows is typically conducted over multiple periods. First, a number of periods is used to develop periodic characteristics, and afterwards statistics are collected from averages over multiple periods. As a consequence, it is uncertain whether the numerical results are exactly time-periodic, and additionally, the time domain might be needlessly long. In this article, we circumvent these concerns by using a time-periodic function space. Consequently, the boundary conditions and solutions are exactly periodic. We employ the isogeometric analysis framework to achieve higher-order smoothness in both space and time. The discretization is performed using residual-based variational multiscale modeling and weak boundary conditions are adopted to enhance the accuracy near the moving boundaries of the computational domain. We enforce the time-periodic boundary condition within the isogeometric discretization spaces, which converts the two-dimensional time-dependent problem into a three-dimensional boundary value problem. Furthermore, we determine the boundary velocities of moving hydrofoils directly from the computational mesh and use a conservation methodology for force extraction. Application of the computational setup to heaving and pitching hydrofoils displays very accurate and exactly periodic results for lift and drag.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.