Abstract

We find conditions for the bifurcation of periodic spatially homogeneous and spatially inhomogeneous solutions of a three-dimensional system of nonlinear partial differential equations describing a soil aggregate model. We show that the transition to diffusion chaos in this model occurs via a subharmonic cascade of bifurcations of stable limit cycles in accordance with the universal Feigenbaum–Sharkovskii–Magnitskii bifurcation theory.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.