Abstract
In this paper, the beam squint problem, which causes significant variations in radiated beam gain over frequencies in millimeter wave communication system, is investigated. A constant modulus beamformer design, which is formulated to maximize the expected average beam gain within the bandwidth with limited variation over frequencies within the bandwidth, is proposed. A semidefinite relaxation (SDR) method is developed to solve the optimization problem under the constant modulus constraints. Depending on the eigenvalues of the optimal solution, either direct beamforming or transmit diversity based beamforming is employed for data transmissions. Through numerical results, the proposed transmission scheme can compensate for beam squint effectively and improve system throughput. Overall, a transmission scheme for beam squint compensation in wideband wireless communication systems is provided.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.