Abstract
We consider the space-time behavior of the two dimensional Navier–Stokes flow. Introducing some qualitative structure of initial data, we succeed to derive the first order asymptotic expansion of the Navier–Stokes flow without moment condition on initial data in L1(R2)∩Lσ2(R2). Moreover, we characterize the necessary and sufficient condition for the rapid energy decay ‖u(t)‖2=o(t−1) as t→∞ motivated by Miyakawa–Schonbek [21]. By weighted estimated in Hardy spaces, we discuss the possibility of the second order asymptotic expansion of the Navier–Stokes flow assuming the first order moment condition on initial data. Moreover, observing that the Navier–Stokes flow u(t) lies in the Hardy space H1(R2) for t>0, we consider the asymptotic expansions in terms of Hardy-norm. Finally we consider the rapid time decay ‖u(t)‖2=o(t−32) as t→∞ with cyclic symmetry introduced by Brandolese [2].
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.