Abstract
In Future Space-Terrestrial Integrated Networks (FSTINs), mobility is the norm rather than the exception, the current TCP/IP architecture is not competent. As a promising future network architecture, Named Data Networking (NDN) can support content consumer mobility naturally, but the content producer mobility support remains a challenging problem. Most previous research simply considered this problem in terrestrial scenarios, which involve stable infrastructures to achieve node mobility management. In this paper, we consider the problem in an FSTIN scenario without special handover management infrastructures. Specifically, we propose a tracing-based producer mobility management scheme and an addressing-assisted forwarding method via NDN architecture. We formally describe Multi-Layered Satellite Networks via a Time Varying Graph model and define the foremost path calculating problem to calculate the route of space segment, as well as an algorithm that can function in both dense (connected) and sparse (delay/disruption tolerant) scenarios. Finally, we discuss the acceleration method that can improve the Space-Terrestrial Integrated forwarding efficiency. Performance evaluation demonstrates that the proposed scheme can support fast handover and efficient forwarding in the FSTIN scenario.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.