Abstract

A self-consistent theory of spatial differential forms over a pair (M,Γ)is proposed. The operators d(spatial exterior differentiation), dT (temporal Lie derivative) andL (spatial Lie derivative) are defined, and their properties are discussed. These results are then applied to the study of the torsion and curvature tensor fields determined by an arbitrary spatial tensor analysis $$(\tilde \nabla ,\tilde \nabla T)$$ (M,Γ). The structural equations of $$(\tilde \nabla ,\tilde \nabla T)$$ and the corresponding spatial Bianchi identities are discussed. The special case $$(\tilde \nabla ,\tilde \nabla T) = (\tilde \nabla *,\tilde \nabla T*)$$ is examined in detail. The spatial resolution of the Riemann tensor of the manifold M is finally analysed; the resultingstructure of Eintein's equations over a pair (ν4,Γ)is established. An application to the study of the problem of motion in terms of co-moving atlases is proposed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.