Abstract

Space agencies worldwide have a long-term vision of sending human missions to Mars <xref ref-type="bibr" rid="ref1" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">[1]</xref> . The next favorable launch window occurs in 2033, and plans are ongoing to realize such endeavors. An essential part of this preparation is the search for new technologies to mitigate mission performance risks. A critical further technological advancement is passive or batteryless wireless sensor technology <xref ref-type="bibr" rid="ref2" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">[2]</xref> , <xref ref-type="bibr" rid="ref3" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">[3]</xref> , as used in the Internet of Things (IoT) <xref ref-type="bibr" rid="ref4" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">[4]</xref> , which can be favorably used to continuously monitor the physiological conditions of crew members in the space habitat and structural health of spaceflight equipment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call