Abstract

A major guideline for the design of the United States's Space Station is that the Space Station address a wide variety of functions. These functions include the servicing of unmanned assets in space, the support of commercial laboratories in space and the efficient management of the Space Station itself: the largest space asset. For the Space Station to address successfully these and other functions, the operating costs must be minimized. Furthermore, crew time in space will be an exceedingly scarce and valuable commodity. The human operator should perform only those tasks that are unique in demanding the use of the human creative capability in coping with unanticipated events. The technologies of automation and robotics (A & R) have the promise to help in reducing Space Station operating costs and to achieve a highly efficient use of the human in space. The use of advanced automation and artificial intelligence techniques, such as expert systems, in Space Station subsystems for activity planning and failure mode management will enable us to reduce dependency on a mission control center and could ultimately result in breaking the umbilical link from Earth to the Space Station. The application of robotic technologies with advanced perception capability and hierarchical intelligent control to servicing systems will enable us to service assets either at the Space Station or in situ with a high degree of human efficiency. This paper presents the results of studies conducted by NASA and its contractors, at the urging of the Congress, leading toward the formulation of an automation and robotics plan for Space Station development.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call