Abstract

Stochastic cellular automata for rock-paper-scissors games are related to Lotka-Volterra model. Simulations are usually performed by two methods local and global interactions. It is well known that the population dynamics with local interaction is stable, where all species coexist. In contrast, global interaction leads to extinction. So far, theories such as mean-field theory and pair approximation have been presented, but they never explained the stable dynamics in local simulation. In the present article, we apply effective medium approximation (EMA) which has been developed in Physics. The effective medium is determined in a self-consistent way. The EMA theory well predicts the stability of population dynamics. Moreover, it fairly explains the aggregation of each species observed in the stationary state.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.