Abstract

This work proposes space partitioning, a new approach to evolutionary many-objective optimization. The proposed approach instantaneously partitions the objective space into subspaces and concurrently searches in each subspace. A partition strategy is used to define a schedule of subspace sampling, so that different subspaces can be emphasized at different generations. Space partitioning is implemented with adaptive epsilon-ranking, a procedure that re-ranks solutions in each subspace giving selective advantage to a subset of well distributed solutions chosen from the set of solutions initially assigned rank-1 in the high dimensional objective space. Adaptation works to keep the actual number of rank-1 solutions in each subspace close to a desired number. The effects on performance of space partitioning are verified on MNK-Landscapes. Also, a comparison with two substitute distance assignment methods recently proposed for many-objective optimization is included.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.