Abstract

In partitioning space in the analysis of a continuous charge distribution, the requirement of locality, formulated by Kurki-Suonio (Kurki-Suonio 1968, 1971; Kurki-Suonio and Salmo 1971), should be preserved. It states that density at a point should be assigned to a center in the proximity of that point. In discrete boundary partitioning schemes, the density at each point is assigned to a specific basin, while in fuzzy boundary partitioning, the density at the point may be assigned to overlapping functions centered at different locations. The least-squares formalisms described in chapter 3 implicitly define a space partitioning scheme, based on the density functions used in the refinement that are each centered on a specific nucleus. Since the density functions are continuous, they overlap, so the fragments interpenetrate rather than meet at a discrete boundary. Such fuzzy boundaries correspond to smoothly varying functions, both in real and reciprocal space, and therefore to well-behaved fragment scattering factors, and reasonable fragment electrostatic moments. The interpenetratingfragment partitioning schemes are related to the Mulliken and Løwdin population analyses of theoretical chemistry. The topological analysis of the total density, developed by Bader and coworkers, leads to a scheme of natural partitioning into atomic basins which each obey the virial theorem. The sum of the energies of the individual atoms defined in this way equals the total energy of the system. While the Bader partitioning was initially developed for the analysis of theoretical densities, it is equally applicable to model densities based on the experimental data. The density obtained from the Fourier transform of the structure factors is generally not suitable for this purpose, because of experimental noise, truncation effects, and thermal smearing. The topological analysis of the density leads to a powerful classification of bonding based on the electron density. It is discussed in the final sections of this chapter. The stockholder partitioning concept is one of the important contributions to charge density analysis made by Hirshfeld (1977b). It defines a continuous sampling function wi(r), which assigns the density among the constituent atoms. The sampling function is based on the spherical-atom promolecule density—the sum of the spherically averaged ground-state atom densities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.