Abstract

The finite field modular multiplier is the most critical component in the elliptic curve crypto processor (ECCP) consuming the maximum chip area and contributing the most to the device latency. Modular multiplication, point multiplication, point doubling are few of the critical activities to be carried out by multiplier in ECC algorithm, and should be managed without compromising on security and without burdening space and time complexities. Since the area complexity of the Crypto processor is mainly based on the Modular Multiplier incorporated within the ECC processor, the major contribution of this work includes the replacement of traditional Karatsuba multiplier with the proposed space optimized multiplier inside the processor The complete modular multiplier and the cryptoprocessor module is synthesized and simulated using Xilinx ISE Design suite 14.4 software. Experimental investigation show an improvement in area efficiency of cryptoprocessor, since proposed scheme occupies relatively reduced percentage area of FPGA as compared to the one using traditional Karatsuba multiplier.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.