Abstract

The paper addresses the problem of how the spatial quantisation mode and subband adaptive uniform scalar quantiser can be jointly optimised in the minimum description length (MDL) framework for compression of ultrasound images. It has been shown that the statistics of wavelet coefficients in the medical ultrasound (US) image can be better approximated by the generalised Student t-distribution. By combining these statistics with the operational rate-distortion (RD) criterion, a space-frequency quantiser (SFQ) called the MDL-SFQ was designed, which used an efficient zero-tree quantisation technique for zeroing out the tree-structured sets of wavelet coefficients and an adaptive scalar quantiser to quantise the non-zero coefficients. The algorithm used the statistical 'variance of quantisation error' to achieve the different bit-rates ranging from near-lossless to lossy compression. Experimental results showed that the proposed coder outperformed the set partitioning in hierarchical trees (SPIHT) image coder both quantitatively and qualitatively. It yielded an improved compression performance of 1.01 dB over the best zero-tree based coder SPIHIT at 0.25 bits per pixel when averaged over five ultrasound images.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.