Abstract

In block stacking warehouses, pallets of Stock Keeping Units (SKUs) are stacked on top of one another in lanes on the warehouse floor. A conventional layout consists of multiple bays of lanes separated by aisles. The depths of the bays and the number of aisles determine the storage space utilization. Using an analytical model, we show that the traditional lane depth model underestimates accessibility waste and therefore does not provide an optimal lane depth. We propose a new model of wasted storage space and embed it in a mixed-integer program to find the optimal bay depths. The model improves space utilization by allowing multiple bay depths and allocating SKUs to appropriate bays. Our computational study shows the proposed model is capable of solving large-scale problems with a relatively small optimality gap. We use simulation to evaluate performance of the proposed model on small to industrial-sized warehouses. We also include a case study from the beverage industry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.