Abstract

We model a deterministic parallel program by a directed acyclic graph of tasks, where a task can execute as soon as all tasks preceding it have been executed. Each task can allocate or release an arbitrary amount of memory (i.e., heap memory allocation can be modeled). We call a parallel schedule efficient if the amount of memory required is at most equal to the number of processors times the amount of memory required for some depth-first execution of the program by a single processor. We describe a simple, locally depth-first scheduling algorithm and show that it is always space efficient. Since the scheduling algorithm is greedy, it will be within a factor of two of being optimal with respect to time. For the special case of a program having a series-parallel structure, we show how to efficiently compute the worst case memory requirements over all possible depth-first executions of a program. Finally, we show how scheduling can be decentralized, making the approach scalable to a large number of processors when there is sufficient parallelism.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.