Abstract

Diffuse optical tomography problems rely on the solution of an optimization problem for which the dimension of the parameter space is usually large. Thus, gradient-type optimizers are likely to be used, such as the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm, along with the adjoint-state method to compute the cost function gradient. Usually, theL2-inner product is chosen within the extraction procedure (i.e., in the definition of the relationship between the cost function gradient and the directional derivative of the cost function) while alternative inner products that act as regularization can be used. This paper presents some results based on space-dependent Sobolev inner products and shows that this method acts as an efficient low-pass filter on the cost function gradient. Numerical results indicate that the use of Sobolev gradients can be particularly attractive in the context of inverse problems, particularly because of the simplicity of this regularization, since a single additional diffusion equation is to be solved, and also because the quality of the solution is smoothly varying with respect to the regularization parameter.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.