Abstract

The combined finite–discrete element method (FDEM) belongs to a family of methods of computational mechanics of discontinua. The method is suitable for problems of discontinua, where particles are deformable and can fracture or fragment. The applications of FDEM have spread over a number of disciplines including rock mechanics, where problems like mining, mineral processing or rock blasting can be solved by employing FDEM. In this work, a novel approach for the parallelization of two-dimensional (2D) FDEM aiming at clusters and desktop computers is developed. Dynamic domain decomposition based parallelization solvers covering all aspects of FDEM have been developed. These have been implemented into the open source Y2D software package and have been tested on a PC cluster. The overall performance and scalability of the parallel code have been studied using numerical examples. The results obtained confirm the suitability of the parallel implementation for solving large scale problems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call