Abstract

Deciphering exogenous cues that determine stem cell fate decisions is a persisting challenge of cell biology and bioengineering. In an effort to unravel the role of spatial constraints in the cell-instructive characteristics of bone marrow microenvironments, murine hematopoietic stem and progenitor cells (HSPC) were exposed to fibronectin-coated microcavities in vitro. Microcavity sizes were chosen to allow for the inclusion of either individual or multiple cells. Repopulation experiments using lethally irradiated mice showed that the maintenance of functional HSPC in culture critically depends on cavity dimensions. Short-term repopulating hematopoietic stem cells (ST-HSC) were found to be best supported within single-cell sized compartments while long-term repopulating HSC (LT-HSC) were maintained within both cavity sizes. In sum, the reported data reveal spatial restriction to be a simple but powerful means for directing HSPC fate ex vivo.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call