Abstract
The broad application of peroxymonosulfate (PMS)-assisted oxidation by heterogeneous catalysts for contaminant removal suffers from the limitation of low PMS decomposition efficiency and consequent excessive electrolyte residues. In this work, we report that a micrometer-scale superstructured Ni-N-C catalyst Ni-NCNT/CB with a nanotube-array surface layer exhibits ultrahigh m-cresol removal efficiency with low PMS input and possesses ∼17-fold higher catalytic specific activity (reaction rate constant normalized to per Ni-Nx site) compared to the traditional Ni-SAC catalyst. Electron paramagnetic resonance results indicate that 1O2 is the dominant oxygen species, and Ni-NCNT/CB with a space-confined layer exhibits high 1O2 utilization for m-cresol degradation. Electrochemical impedance spectroscopy and a normalized k value of Ni-NCNT/CB confirm the spatial confinement effect on the catalyst surface, which is beneficial for regulating the mass transfer and exerting the high activity of active sites. This study gives a new application for spatial confinement, and the configuration of Ni-NCNT/CB may guide a rational catalyst design for AOP wastewater treatment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.