Abstract
Universal quantum computers are the only general purpose quantum computers known that can be implemented as of today. These computers consist of a classical memory component which controls the quantum memory. In this paper, the space complexity of some data stream problems, such as PartialMOD and Equality, is investigated on universal quantum computers. The quantum algorithms for these problems are believed to outperform their classical counterparts. Universal quantum computers, however, need classical bits for controlling quantum gates in addition to qubits. Our analysis shows that the number of classical bits used in quantum algorithms is equal to or even larger than that of classical bits used in corresponding classical algorithms. These results suggest that there is no advantage of implementing certain data stream problems on universal quantum computers instead of classical computers when space complexity is considered.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.