Abstract
Using information on geomagnetic activity, sunspot numbers and cosmogenic isotopes, supported by historic eclipse images and in conjunction with models, it has been possible to reconstruct annual means of solar wind speed and number density and heliospheric magnetic field (HMF) intensity since 1611, when telescopic observations of sunspots began. These models are developed and tuned using data recorded by near-Earth interplanetary spacecraft and by solar magnetograms over the past 53 years. In this paper, we use these reconstructions to quantify power input into the magnetosphere over the past 400 years. For each year, both the annual mean power input is computed and its distribution in daily means. This is possible because the distribution of daily values divided by the annual mean is shown to maintain the same lognormal form with a constant variance. This study is another important step towards the development of a physics-based, long-term climatology of space weather conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.