Abstract

A theoretical investigation of space-charge plane-wave interaction at dielectric-semiconductor interfaces is presented. A full-wave and charge transport formulation is applied to the analysis of the fundamental mode of propagation in a semiconductor substrate backed with a ground plane. Closed-form expressions for the field components, charge carrier density, and current density are obtained. The reflection coefficients for both H- and E-polarized incident waves were then derived from the field solutions. The interaction between the fields and charge carriers causes a charge accumulation at the semiconductor surface in the case of H-polarization. The effects of the charge accumulation on the reflection coefficient are accounted for. Results indicate that the space charge exerts a weak effect on the reflection coefficient and a strong screening effect on the normal component of the electric field. The tangential component, however, is mainly governed by energy dissipation effect resulting from the conduction current.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call