Abstract
The understanding of the complexity of the space charge formation and movement inside insulation materials demands a high resolution measurement technique. The Kelvin Probe Force Microscopy (KPFM) can fulfill this demand. The KPFM delivers the data of the locally varying surface potential. They can be differentiated twice together with a reliable statistical approach to overcome the noise problem in the experimental surface potential data. In this way, we get the locally varying space charges according to the Poisson equation. This statistical approach has been tested by comparing the calculated space charge distributions from simulated and measured noisy surface potential data. The formation and the movement of space charges with respect to time under unbiased and biased conditions were investigated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Dielectrics and Electrical Insulation
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.