Abstract
For power transformer insulating oil, we focused on palm oil fatty acid ester (PFAE). It has satisfactory insulating performance, excellent cooling ability and superior biodegradability. Recently, investigations for application of PFAE to environment-friendly power transformers installations have been started. In this paper, the space charge behavior in PFAE was investigated from the measurement results of the electric field by using Kerr electro-optic method under dc voltages applications. For the field measurement, the Kerr constant of PFAE was identified first. Then, the electric field strength and its temporal change were measured in several PFAE / pressboard (PB) insulation systems. The electric field in PFAE was determined by the capacitive distribution at the moment of the voltage application, and decreased rapidly with time and reached the steady state determined by the resistive distribution. The transition time of the capacitive distribution to the resistive one and the strength of electric field in PFAE were much different from those in mineral oil. The influence of oil flow on the time transition of the electric field was also measured. Their differences were discussed with the charge behavior in liquids, based on electro-chemical properties of the oil. We discussed the difference of the flow electrification characteristics between PFAE and mineral oil, and its mechanism was discussed based on the charge behavior in oils.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Dielectrics and Electrical Insulation
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.