Abstract
Seasonal and inter-annual variations in phytoplankton community abundance in the Bay of Biscay are studied. Preliminarily processed by the National Aeronautics and Space Administration (NASA) to yield normalized water-leaving radiance and the top-of-the-atmosphere solar radiance, Sea-viewing Wide Field-of-View Sensor (SeaWiFS), Moderate Resolution Imaging Spectroradiometer (MODIS), and Coastal Zone Color Scanner (CZCS) data are further supplied to our dedicated retrieval algorithms to infer the sought for parameters. By applying the National Oceanic and Atmospheric Administration's (NOAA's) Advanced Very High Resolution Radiometer (AVHRR) data, the surface reflection coefficient in the only band in the visible spectrum is derived and employed for analysis. Decadal bridged time series of variations of diatom-dominated phytoplankton and green dinoflagellate Lepidodinium chlorophorum within the shelf zone and the coccolithophore Emiliania huxleyi in the pelagic area of the Bay are documented and analysed in terms of impacts of some biogeochemical and geophysical forcing factors. It is shown that in the shelf zone of the Bay, the diatom-dominated phytoplankton community variations are predominantly controlled by river discharge variations, by water column stratification conditions (forming in winter–early spring), and by wind action (resulting in such phenomena as up-wellings and sediment re-suspension). Satellite data indicate that while in river deltas and adjoining waters the L. chlorophorum blooming events occur annually, in the Iroise Sea and near the Bailiwick of Guernsey, they happen irregularly. It is thought that such an irregular pattern, possibly, arises from L. chlorophorum competing with other phytoplankton species for nutrients. E miliania huxleyi blooms are found to occur nearly every year in the northern part of the Bay, whereas in the central area, this phenomenon occurs very irregularly. Satellite data indicate that variations in the water chemistry (variations in the nitrogen : phosphorus ratio due to preceding blooms of diatoms), and the incident irradiance level (degree of cloudiness), are important factors controlling the occurrence of E. huxleyi blooming in the central part of the Bay. Covering a 30 year period, the bridged data from CZCS, AVHRR, SeaWiFS, and MODIS imply that climate change might be responsible for the observed increase in E. huxleyi blooming events in the Bay since 1979.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.