Abstract

We present new experimental evidence and extensive numerical simulations of a few distinct fingerprints generated by dielectric and conductive microparticles in electrolyte environment on the capacitance spectra of nanoelectrode array sensors. Finite element simulations in good agreement with measurements allow us to identify unambiguously the physical origin of these features, and to illustrate their dependence on the system's geometrical and physical properties. In particular, we show that conductive particles induce a response with complex space and frequency dependencies, caused by the formation of an AC electrical double layer at the particle surface, and its interaction with the working and counter electrodes in the array. Furthermore, we highlight features that could lead to false-negative detection events in sensing applications. The theoretical predictions are confirmed by experiments on a state of the art CMOS pixelated nanocapacitor biosensor platform.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.