Abstract

We investigated the expression pattern and underlying mechanism that controls hepatocyte growth factor (HGF) receptor (c-met) expression in normal kidney and a variety of kidney cells. Immunohistochemical staining showed widespread expression of c-met in mouse kidney, a pattern closely correlated with renal expression of Sp1 and Sp3 transcription factors. In vitro, all types of kidney cells tested expressed different levels of c-met, which was tightly proportional to the cellular abundances of Sp1 and Sp3. Both Sp1 and Sp3 bound to the multiple GC boxes in the promoter region of the c-met gene. Coimmunoprecipitation suggested a physical interaction between Sp1 and Sp3. Functionally, Sp1 markedly stimulated c-met promoter activity. Although Sp3 only weakly activated the c-met promoter, its combination with Sp1 synergistically stimulated c-met transcription. Conversely, deprivation of Sp proteins by transfection of decoy Sp1 oligonucleotide or blockade of Sp1 binding with mithramycin A inhibited c-met expression. The c-met receptor in all types of kidney cells was functional and induced protein kinase B/Akt phosphorylation in a distinctly dynamic pattern after HGF stimulation. These results indicate that members of the Sp family of transcription factors play an important role in regulating constitutive expression of the c-met gene in all types of renal cells. Our findings suggest that HGF may have a broader spectrum of target cells and possess wider implications in kidney structure and function than originally thought.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.