Abstract

Engineered nanomaterials (ENMs) can enter agroecosystems because of their widespread use and disposal. Within soil, ENMs may affect legumes and their dinitrogen (N2) fixation, which are critical for food supply and N-cycling. Prior research focusing on end point treatment effects has reported that N2-fixing symbioses in an important food legume, soybean, can be impaired by ENMs. Yet, it remains unknown how ENMs can influence the actual amounts of N2 fixed and what plant total N contents are since plants can also acquire N from the soil. We determined the effects of one already widespread and two rapidly expanding carbonaceous nanomaterials (CNMs: carbon black, multiwalled carbon nanotubes, and graphene; each at three concentrations) on the N economy of soil-grown soybeans. Unlike previous studies, this research focused on processes and interactions within a plant-soil-microbial system. We found that total plant N accumulation was unaffected by CNMs. However, as shown by 15N isotope analyses, CNMs significantly diminished soybean N2 fixation (by 31-78%). Plants maintained N stoichiometry by assimilating compensatory N from the soil, accompanied by increased net soil N mineralization. Our findings suggest that CNMs could undermine the role of legume N2 fixation in supplying N to agroecosystems. Maintaining productivity in leguminous agriculture experiencing such effects would require more fossil-fuel-intensive N fertilizer and increase associated economic and environmental costs. This work highlights the value of a process-based analysis of a plant-soil-microbial system for assessing how ENMs in soil can affect legume N2 fixation and N-cycling.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call