Abstract
With the wide application of nanomaterials (NMs) in agriculture, it is particularly important to assess the impact of these NMs on soil microorganisms. In this study, different varieties of soybean rhizosphere microorganisms (RM) were employed to simulate the alleviate effect of molybdenum nanoparticles (Mo NPs) induced stress in presence of soybean plants. Mo NPs caused serious toxic effects on soybean growth and nitrogen fixation at a concentration of 100 mg kg−1: plant height and biomass were reduced by 56.4% and 82.8%, respectively, and the ability to fix nitrogen was almostly lost. However, after adding different varieties of soybean RM (RM-Williams 82, RM-Youchun 1204, and RM-Zhongdou 41), the stress caused by high concentrations of Mo NPs on soybean plants was significantly reduced. The plant height, root length, biomass, and nitrogen fixation ability were improved by 70.8%, 80.7%, 145.8%, and 349.8%, respectively, following the addition of soybean RM-Williams 82. High-throughput sequencing revealed that Mo NPs treatment affected the microbial community structure. Among them, Flavisolibacter and Caulobacter genera abundance increased significantly, which might be the key factor in relieving Mo NPs-induced stress on soybean growth. These findings suggest a novel mode of RM as a promising strategy to prevent deleterious effects of stress with NPs on plants in the future.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.