Abstract

Soybean protein isolate (SPI) is widely used in the food industry. However, SPI-based emulsion gels tend to aggregate and undergo oiling-off during freeze-thawing. In this study, emulsion gels were prepared by a combination of heat treatment and ionic cross-linking using SPI and sodium alginate (SA) as raw materials. The focus was on exploring the mechanistic effects of the SPI-SA double network structure on the freeze-thaw stability of emulsion gels. The results showed that the addition of SA could form different types of network structures with SPI, due to different degrees of phase separation. In addition, SA appearing on the SPI network indicated that the addition of Ca2+ shielded the electrostatic repulsion between SPI and SA to form SPI-SA complexes. The disappearance of the characteristic peaks of SA and SPI in Fourier transform infrared spectroscopy analysis also confirmed this view. Low-field nuclear magnetic resonance data revealed that SA played a role in restricting water migration within the emulsion gels, increasing bound water content, and thereby improving the water-holding capacity of the emulsion gels. Therefore, the incorporation of SA improved the freeze-thaw stability of SPI emulsion gels. These findings offer a theoretical basis and technical support for SPI application in frozen products.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.